Non-extensive radiobiology

نویسندگان

  • Oscar Sotolongo-Grau
  • Daniel Rodr'iguez-P'erez
  • Jos'e Carlos Antoranz
  • Oscar Sotolongo-Costa
چکیده

The expression of survival factors for radiation damaged cells is based on probabilistic assumptions and experimentally fitted for each tumor, radiation and conditions. Here we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. A generalization of the exponential, the logarithm and the product to a non-extensive framework, provides a simple formula for the survival fraction corresponding to the application of several radiation doses on a living tissue. The obtained expression shows a remarkable agreement with the experimental data found in the literature, also providing a new interpretation of some of the parameters introduced anew. It is also shown how the presented formalism may has direct application in radiotherapy treatment optimization through the definition of the potential effect difference, simply calculated between the tumour and the surrounding tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized calculus in radiobiology: Physical implications

Non-extensive statistical physics has allowed to generalize mathematical functions such as exponential and logarithms. The same framework is used to generalize sum and product so that the operations allow a more fluid way to work with mathematical expressions emerging from non-additive formulation of statistical physics. In this work we employ the generalization of the exponential, logarithm an...

متن کامل

Does Exposure to Static Magnetic Fields Generated by Magnetic Resonance Imaging Scanners Raise Safety Problems for Personnel?

MRI workers are occupationally exposed to static and time-varying gradient magnetic fields.  While the 24-hour time-averaged exposure to static magnetic fields is about a few mT, the maximum static field strength can be as high as 500 mT during patient setup. Over the past several years, our laboratory has performed extensive experiments on the health effects of exposure of animal models and h...

متن کامل

COMMENTARY 21 st L H Gray Conference : the radiobiology / radiation protection interface

The 21st L H Gray Conference, organised by the L H Gray Trust with the Society for Radiological Protection, brought together international experts in radiobiology, epidemiology and risk assessment, and scientists involved in diagnostic and therapeutic radiation exposure. The meeting — held in Edinburgh, Scotland, on 4–6 June 2008 — aimed to raise awareness, educate and share knowledge of import...

متن کامل

Introduction to Radiobiology of Targeted Radionuclide Therapy

During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRTs) are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellu...

متن کامل

5-bromouracil utilization by Bacillus subtilis.

The replacement of thymine (T) in deoxyribonucleic acid (DNA) by 5-bromouracil (BU) (F. Weygand, A. Wacker, and H. Dellweg, Z. Naturforsch. 7b:19, 1952) is an aid in density separation of types of DNA, and in studies on radiobiology and mutagenesis. The usefulness of BU is, however, limited by its toxic effects. Extensive substitution in DNA of T by BU is lethal for most Escherichia coli and Ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010